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OPC UA Safety: Functional Safety  
Communication with OPC UA

Safe Communication for Modular Machines 
and Dynamic Systems 
OPC UA Safety (OPC 10000-15 Unified Architecture 
Part 15) specifies a functional safety layer for  
communication between industrial controllers via a  
standardized, vendor-independent interface. It  
supports both unicast and multicast at the  
application layer, as well as arbitrarily structured 
safety data with a length of up to 1500 bytes.  

The safety measures comply with all relevant  
safety standards. OPC UA Safety makes it possible 
to build modular machines in which the safety  
functions adapt to the actual configuration of such  
a machine. It is even possible to realize safety  
functions requiring a change of communication  
partners during runtime, for instance in the context  
of autonomous mobile robots using OPC UA Safety.
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➞  February 2018: Kick-Off Meeting of “PRO-
FIsafe over OPC UA”, a joint working group 
between OPC Foundation and Profibus & 
Profinet International

➞  April 2019: The FLC (Field-Level Communica- 
tions) Initiative of the OPC Foundation  
decides to make of it for the safe exchange 
of data, and the working group is moved into 
that initiative

➞  July 2019: The specification is renamed  
“OPC UA Part 15: Safety” and becomes part 
of the OPC core set of specifications

➞  October 2019: Publication of Release 1.04 
(Evaluated against IEC 61784-3 by TÜV Süd)

➞  October 2019: FLC Initiative funds the devel-
opment of an OPC UA Safety test tool 

➞  March 2020: FLC Initiative funds development 
of a stack and invites other companies to 
participate

➞  July 2020: Publication of Release 1.04

➞  November 2021: Publication of Release 1.05

Milestones
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Introduction

The state of the art in functional safety commu-
nication is described in IEC 61508 [1], IEC 62280 
[2] and IEC 61784-3 [3]. These standards describe 
the transmission of safety-related messages via 
a standard (non-safe) communication channel. 
This can only be done if all transmission errors are  
detected in the receiver in a safety-related manner 
with a guaranteed probability of detection. Today,  
almost all fieldbus protocols offer an associated  
profile for safe communication. This allows safety- 
related controllers to communicate via standard 
communication channels with the sensors and  
actuators belonging to the safety function. A sepa-
rate communication channel for functional safety-
related data exchange is no longer required. Yet, 
communication between machines demands a safe-
ty protocol that supports communication from con-
troller to controller since each machine or even each 
machine module is usually represented by a control-
ler. For this type of safety communication, however, 
no manufacturer-independent, open standard exists 
to date. This gap is now being closed by the OPC UA 
Safety specification. Functional, safe communication  
between machines (or between modules of machines) 
is of relevance to a variety of different scenarios. Typi-
cal examples are transfer lines, electrified monorail  
systems and machine tools with modular loading 
and unloading systems. Others include autono-
mous mobile robots (AMR) that dock on to machines  
and then perform a common safety function. A com-
mon safety function is given, say, where the machine 
with resident AMR needs to be stopped in response 
to pressing the emergency stop button on the  
AMR itself.

OPC UA Safety addresses scenarios such as these. 
In particular, it offers the following features and  
properties: 
➞  Unidirectional and bidirectional communication, 

as well as multicast, at the application layer
➞  Any network topology: star, line, ring, grid, etc. 
➞  Up to 1500 bytes of safety user data
➞  Dynamic connection setup at runtime. 

From the aspect of functional safety, OPC UA Safety 
is based on the widely used PROFIsafe protocol [4].  
Because OPC UA Safety is built on OPC UA, it  
inherits properties such as:
➞  Safety-related communication and standard 

communication on a single transmission channel
➞  Arbitrary data rates
➞  No safety-related requirements whatsoever on 

the non-safety-related nodes in the network
➞  No safety-related requirements on network  

components (e.g., switches)
➞  No requirements on safe clock synchronization.

Some of the unique benefits of OPC UA Safety are:
➞  Support of interoperable multi-vendor Controller-

to-Controller (C2C), Controller-to-Device (C2D) 
and Device-to-Device (D2D) communication

➞  Highly flexible – applicable in transportation,  
process & factory automation, motion control

➞  Scalable - from SIL 1 to SIL 4
➞  Support of dynamic application scenarios –  

dynamic reconfiguration of machinery and plants
➞  Large data payload size – scalable from simple  

to complex, high capacity applications
➞  Ability to traverse routers – scalable from single 

machines to plant-wide operation
➞  Simple deployment in resource-constrained end-

points (amplified by the availability of a  
commercial stack)

This brochure first provides an overview (chapter 1) 
and then describes the architecture of OPC UA Safe-
ty (chapter 2). The last part (chapter 3) summarizes 
the basic reasoning for verifying protocol safety.
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1.1 Services  
The basic principle behind the safe exchange of data 
with OPC UA Safety is a direct point-to-point con-
nection with the SafetyProvider (data source) and 
SafetyConsumer (data sink) endpoints. As defined 
by the part it plays, the SafetyProvider receives user 
data from the local safety application and makes it 
available via OPC UA services. The SafetyConsumer 
uses OPC UA services to retrieve the user data and 
makes them available to the local safety application. 
As such, this is a request/response procedure, as 
shown in Figure 1. 

1. Overview 

Figure 1: Sequence diagram of an OPC UA Safety connection to illustrate the request/response procedure.
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1.2 Safety Measures
To detect transmission errors, relevant additional  
information is added to the safety-related request 
and response messages. Essentially, this involves 
system-wide unique identifiers (IDs) for checking the 
respective provider, a monitoring number (MNR)  
for checking the correct sequence, and a CRC  
signature for detecting data corruption. Sending a 
timestamp is not necessary since punctuality of  
the ResponseSPDU can be checked by the Safety-
Consumer using its local clock alone. This means 
there is no need to synchronize the SafetyProvider 
and SafetyConsumer clocks.

1.3 Unique Identifiers (IDs) 
OPC UA Safety uses different IDs to detect address-
ing errors. Each SafetyProvider is assigned a unique 
ProviderID, which is made known to the SafetyCon-
sumer to begin with. Together with other information 
(e.g., signature showing the structure of the user 
data sent), an SPDU_ID is calculated from the Pro-
viderID, which is included in each ResponseSPDU. 
Based on the SPDU_ID, the SafetyConsumer can 
check whether the SPDU received originates from 
the expected SafetyProvider. In larger-type systems, 
assigning unique IDs may come with a high level of 
administrative input. This is particularly true if differ-
ent parts of a plant are built by different integrators. 
Using several machines of the same type and the 
associated cloning of automation projects initially 
also lead to the co-existence of identical IDs, which 

would then have to be changed manually to rule out 
an ID occurring twice. To reduce the input required to 
manage the IDs, each SafetyProvider additionally 
contains a BaseID, which is also included in the 
SPDU_ID and checked by the SafetyConsumer. Not 
every SafetyProvider needs a unique BaseID;  
instead, these are assigned jointly for entire plant 
sections or machines. For example, if two  
integrators are working on the construction of a 
plant, each will use a different BaseID. It is  
sufficient for the ProviderIDs assigned by each  
integrator to be unique. When cloning projects  
for volume-production machines, it is sufficient to  
regenerate a separate BaseID for each machine. 
Since the ProviderIDs are not changed, it is not  
necessary to check for the uniqueness of all IDs after 
cloning. The BaseID is a 128-bit value that can  
be created using a random number generator. In 
practice, for example, this is where a Universal 
Unique Identifier (UUID, [8]) can be generated. It can 
be proven with sufficient probability that no two  
identical BaseIDs will occur. Therefore, it is not  
necessary to make an explicit check as to whether  
all plant parts have different BaseIDs. In some  
applications, it may make sense to inform the  
SafetyProvider of the Safety-Consumer it is currently 
communicating with. For this purpose, the Safety-
Consumer also receives a relevant ConsumerID. 
However, since it is sufficient to check only the  
identity of the SafetyProvider to react in a safe  
manner, the ConsumerID is not safety-relevant.
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Figure 2: Communication relationships: Unidirectional and bidirectional unicast, as well as multicast.
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1.4 Communication Patterns 
In practice, bidirectional and point-to-multipoint con-
nections (multicast) occur in safety applications in 
addition to direct point-to-point connections. These 
are achieved in OPC UA Safety by using multiple 
SafetyProvider/SafetyConsumer pairs, as illustrated 
in Figure 2. Given the SafetyProviders’ multiple in-
stantiation, multicast involves a certain overhead 

over a solution that would use any existing multicast 
mechanisms in the lower layers. OPC UA Safety, 
however, comes with a specification that enables the 
SafetyProvider to be implemented in a way that is 
highly efficient both in terms of memory and comput-
ing capacity.
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2. Architecture 

2.1 Overview and Interfaces 
OPC UA Safety follows the approach recommended 
in IEC 61784-3 (Functional Safety for Fieldbus, [2]), 
as illustrated in Figure 3. Accordingly, OPC UA  
Safety is a layer that is inserted between the safety 
application and the lower network layer that is  
implemented as standard (non-safe) communication 
channel. The OPC UA Safety stack layer has the 
function of checking the integrity of all safety  
messages communicated on the standard channel 
and, on this basis, of detecting communication  
errors and delivering only correct user data to the 
safety application. This provides the capability of  
remaining in control of all communication errors,  
but not of errors in the end nodes themselves.  
Consequently, OPC UA Safety (SafetyProvider and 
SafetyConsumer) must be implemented in compli-
ance with IEC 61508 [1]. In particular, this involves 
measures to overcome random hardware errors on 
the one hand, and systematic hardware and soft-
ware errors on the other. 
Making it easier to accommodate different underly-
ing communication services, connection to the OPC 
UA stack takes place by what is referred to as an 
OPC UA Mapper. Not being part of the safety- 

relevant communication layer, this mapper can be 
adapted without the need for any re-assessment of 
implementing OPC UA Safety. The OPC UA Mapper 
currently supports remote method calls (OPC UA  
Client/Server) as well as OPC UA PubSub. The inter-
face to the safety application (Safety Application  
Interface, SAPI) is in part application-specific be-
cause different applications also exchange different 
data. As usual in OPC UA, however, this interface 
can also be defined on a manufacturer-independent 
basis – e.g., industry-specific – by means of  
so-called companion specifications. In addition to 
SAPI and connection to OPC UA via the OPC UA 
Mapper, SafetyProvider and SafetyConsumer each 
have a Safety Parameter Interface (SPI) and  
a diagnostic interface. Exchanged between Safety-
Provider and SafetyConsumer, the safety protocol 
data unit (SPDU), is defined by the structure of  
the RequestSPDU and ResponseSPDU on the  
one hand, and by the SafetyProvider and  
SafetyConsumer state machines on the other. 
The definitions of the SafetyProvider and  
Safety-Consumer are described in more detail on  
the following pages.
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2.2 SafetyProvider 
The SafetyProvider receives the safe user data  
(SafetyData) from the safety application through its 
Safety Application Programming Interface (SAPI).
Moreover, non-safety-related data (NonSafetyData) 
can also be sent in consistent fashion (see Figure 4). 
This means that both safe and non-safe data  
sampled at the same time by the SafetyProvider are 
also delivered together to the SafetyConsumer.  
The SafetyProvider's behavior, and indirectly that  
of the SafetyConsumer, can be influenced by the 
safety application via control inputs. For example, 
the ActivateFSV input can be used to make the  
SafetyConsumer deliver safe substitute values  
instead of the actual process values to its safety  
application. The SafetyProvider is parameterized  

via the Safety Parameter Interface (SPI) at commis-
sioning time. SafetyBaseID and SafetyProviderID  
together define a globally (sufficiently) unique  
ID for this instance of the SafetyProvider.  
The SafetyStructureSignature is a checksum across  
the structure and type identifier of the safe user  
data sent. This is also checked by the  
SafetyConsumer. If, for example, a programming  
error makes the SafetyConsumer connect a  
three-dimensional vector (identifier for the type  
e.g., “vec3D”) with a SafetyProvider that provides 
orientation in the form of three Euler angles (identifier 
for the type e.g., “orientation”), the signatures  
will not match up, and the Safety-Consumer will  
not deliver this data to its safety application.  

Figure 4: Interfaces of the SafetyProvider: SAPI, SPI and SPDUs.
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Figure 5: OPC UA information model, consisting of the node SafetyACSet (with fixed NodeID) 

and one or more SafetyProviders.

The SafetyProvider's state machine is trivial and 
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Figure 6: State diagram of the SafetyProvider.

2.3 SafetyConsumer 
In the SafetyConsumer, the safe user data is taken 
from the ResponseSPDU, checked for validity and 
delivered to the safety application together with the 
non-safe user data via the SAPI (see Figure 7). In ad-
dition, the safety application receives information 
about the validity of this data via this interface (output 
FSV_Activated). The SafetyConsumer is parameter-
ized via the SPI. In particular, the anticipated Safety-
BaseID and SafetyProviderID are now set and, in the 
same way as the SafetyProvider, a signature saved 
that reveals the safe user data structure and 
identifier(s). In the event if an error, for example, an 
operator acknowledgement (OperatorAckNeces-
sary) is defined which also determines the length of 
time the SafetyConsumer is required to wait before 
the SafetyProvider’s responds and triggers a timeout 
(SafetyConsumerTimeout).
The SafetyConsumer’s state machine is shown in 
Figure 8. Operating in a fault-free state, the Safety-
Consumer cycles through states S13, S14, S15, 
S16 and S18. In state S13 the RequestSPDU is sent 
and in state S14 the ResponseSPDU is being  
awaited. In state S15 the CRC signature of the  
ResponseSPDU is checked and in state S16 the  

origin and timeliness are checked. Failure of any of 
these checks or the occurrence of any timeout in 
state S14 induces state S17, whereupon an error 
message is generated for diagnostic purposes.
A safety-related response may be required when 
OPC UA Safety detects an error in the non-safety-
related communication layers. Depending on  
circumstances, however, OPC UA Safety is capable 
of tolerating such an error. One of these being that 
the error occurs sporadically, i.e., the subsequent 
RequestSPDU is re-rendered error-free. On top of 
this, the last error to occur must not have occurred 
before a SafetyErrorIntervalLimit. This Safety- 
Consumer parameter determines the minimum inter-
val tolerable between sporadic errors, and is set  
according to the desired Safety Integrity Level. For 
SIL2, a value of six minutes or greater must be set. 
And for SIL3, a value of sixty minutes or greater must 
be set. In this case, sporadic errors occurring less 
frequently than every six minutes (for SIL2) do not 
necessarily lead to any transition to a safe state. 
Nonetheless, the next, correct RequestSPDU must 
come in before the SafetyConsumerTimeout expires. 
A tolerated error makes the request-response cycle 
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Figure 7: Interfaces of the SafetyConsumer: SAPI, SPI and SPDUs.
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Figure 8: State diagram of the SafetyConsumer.
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Figure 9: Bidirectional communication where operator acknowledgment is possible on both sides.
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to run through a second time. It must be noted that 
new user data cannot be made available to the safe-
ty application while this is taking place. A safe re-
sponse must be given if an error cannot be tolerated 
(because it is a permanent error, or transient errors 
occur too frequently). In such cases, the SafetyCon-
sumer uses the FSV_Activated variable to tell the 
safety application that no valid process values exist. 
In this case, the user data is set to zero bit by bit. 
Depending on the type of error that has occurred, 
operator acknowledgement may be required to  
return to operation with real process values. Some 
applications always demand operator acknowledge-
ment, this can be given via the OperatorAckNeces-
sary parameter (see Figure 9). 
Any operator acknowledgement required is indicated 
via the OperatorAckRequested output as soon as 
any error has been eliminated. A rising edge at the 
OperatorAckConsumer input subsequently resumes 

regular operation, i.e., the output of process values 
rather than safe substitute values. In the simplest 
case, the OperatorAckConsumer input is connected 
in the safety application of the SafetyConsumer,  
e.g., to a push button or an element in a human-
machine interface. Nonetheless, this does not rule 
out acknowledgement scenarios of  a more complex 
nature. Figure 9, for instance, shows a bidirectional 
OPC UA Safety connection with one SafetyProvider 
and SafetyConsumer in either direction. In this  
example, operator acknowledgement (OA) can take 
place on both sides. For this purpose, the signal is 
connected to the OperatorAckConsumer input of the 
respective SafetyConsumer on the one hand, and to 
the OperatorAckProvider input of the SafetyProvider 
on the other. The latter’s result sets the relevant  
SafetyConsumer’s Operator-AckProvider output. 
Connecting this output to the OperatorAckConsumer 
input acknowledges the SafetyConsumer at the  
connection’s other end.
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2.4  OPC UA Safety for Field-Level 
Communications
The OPC Foundation is developing the Field eXchange 
(OPC UA FX or simply UAFX) specifications to extend 
and enhance the OPC UA capabilities to cover  
requirements of field-level applications. These are now  
available for Controller-Controller applications and will  
soon be available for Controller-Device applications. 
The OPC UA Safety protocol is transported within 
standard UAFX connections using the inter-channel 
principles described in IEC 61784-3 to transmit safety 
data payload between automation components in 

addition to the standard data payload exchange. 
This principle cuts assessment input to the safe 
transmission functions, i.e., to a level that means the 
underlying UAFX connections need no additional 
functional safety assessment. Safety Functional  
Entities may include non-safe and safe input and 
output variables. Safety application inside the FE 
must also be developed in a safe workflow. The  
safety application is connected directly with  
SafetyProvider / SafetyConsumer, which exchange 

Figure 10: Safety connections between Automation Components
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data via the safety protocol (see Figure 10). The  
OPC UA Mapper is used to interface both  
the safety layer and underlying communication. and 
supports the channel between SafetyProvider and 
SafetyConsumer. The most basic type of safety 
communication is bidirectional communication, 
where a safety application on one AC A sends data 
to a safety application on another AC B. The Safety-
Consumer initiates communication with the Request 
SPDU. The SafetyProvider mirrors the received ID 
and counters, adds the requested safety data and 
secures all data via a checksum before responding 
with the ResponseSPDU (see Figure 11).
One AC can be SafetyConsumer and SafetyProvider 
at one and the same time. Connection between 
SafetyProvider and SafetyConsumer can be estab-
lished and terminated during runtime, allowing differ-
ent consumers to connect to the same SafetyPro-
vider at different times.
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Safety
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Safety Data

Safety
Consumer

OPC UA 
Mapper

OPC UA 
Mapper

UAFX
Connection

Safety
Application
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Application

RequestSPDU

ResponseSPDU

Wait for 
Request

Proceed
Request

Wait for 
Request

Initialize

Check
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Wait for 
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Error
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out1  

Figure 11: SafetyProvider and Consumer State Machines 

1  To avoid running into safety 

timeout, SPDUs may also 

be protected by end-to-end 

latency guarantee.

Provide
S-Data

SafetyProvider State Diagram
The SafetyProvider has a very simple state machine 
to implement. It simply waits for a request and, if the 
request is received, the safety message is sent out. 
All safety checks take place on the SafetyConsumer 
side.

SafetyConsumer State Diagram
SafetyConsumer initiates the safe exchange of data, 
waits for the response, and checks for potential 
communication errors (integrity, promptness, au-
thenticity, in line with IEC61784-3). Once done, 
SafeData is provided to the safety application inside 
the AC. If a communication error occurs, failsafe 
substitute values are instead passed to the safety 
application, resulting in error indication.

Safety Data
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3. Safety Argumentation 

3.1 Qualitative Reasoning 
Following international standard IEC 61784-3 [2], 
OPC UA Safety must be able to handle all commu-
nication errors that can occur in the lower network 
layers. These are depicted in Table 1, the mecha-
nisms specified in OPC UA Safety being shown  
in each case. The mechanisms cover errors in the 
(RequestSPDU) request and in the (ResponseSPDU) 

response, despite only the response being checked 
for errors by the SafetyConsumer. This works  
because the SafetyProvider copies all data con-
tained in the RequestSPDU to the ResponseSPDU, 
making it possible to detect an error later in the  
SafetyConsumer.

Table 1: Communication errors protection measures taken according to IEC 61784-3.

Communication Error
Safety Measures

MonitoringNumber Timeout with receipt Set of IDs for SafetyProvider Data integrity check

Corruption – – – x

Unintended repetition x x – –

Incorrect sequence x – – –

Loss x x – –

Unacceptable delay – x – –

Insertion x – – –

Masquerade x – x x

Addressing – – x –
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3.2 Quantitative Evaluation 
The 32-bit CRC method used in OPC UA has a  
conditional residual error probability of 4.0 x 10-10  
or better. This means that out of 2.5 x 109 faulty  
RequestSPDUs, on average less than one is not 
detected as faulty. Figure 12 shows the residual  
error probability for all SPDU lengths from 1 to  
1,521 bytes and all relevant bit error probabilities. 
Each of the values were calculated using the dual 
code (e.g., Castagnoli method [6]). The need to  
iterate over all possible user data lengths is shown 

in Figure 13, this showing the computed conditional 
residual error probability for selected user data span-
ning a more prolonged period. In these cases, the  
residual error probability exceeds the desired value of 
(4 x 10-10) by several orders of magnitude. The figure 
also shows that the residual error probability must 
be calculated for all bit error probabilities. Calculation 
of the "worst case" for bit error probability (p = 0.5) 
does not necessarily lead to the highest conditional 
residual error probability.

Figure 13: Counter-example: selected message lengths where the conditional residual error probability is much larger than 2-32.
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Figure 12: Conditional residual error probability of the CRC procedure used in OPC UA for message lengths of 1-1,521 bytes 
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Summary 

For the first time, OPC UA Safety specifies a stan-
dardized exchange of functional safety-related data 
between industrial controllers and devices from  
different manufacturers. Proceeding from OPC UA 
Client/Server and OPC UA PubSub, which are part 
of the non-safety related communication layers, it is 
possible to define a safe communication protocol 
that meets all IEC 61508 [1] requirements. Unlike 
safe fieldbus protocols, there is no distinction  
between "controllers" and "devices". All communica-
tion users have equal rights and can implement any 
number of data sources (SafetyProvider) and data 
sinks (SafetyConsumer). This permits the creation of 
complex communication relationships and network 
topologies.

OPC UA Safety provides the capability of structur- 
ing user data to suit any application. Capability of 
providing user data lengths of between one and 
1,500 bytes. IEC 61784-3, OPC UA Safety uses a 
set of IDs to check at runtime level whether the data 
originates from the expected source or whether data 
was supplied from an incorrect source, e.g., in  
response to an addressing error. Unlike the known 
safe communication protocols, OPC UA Safety can 
select these IDs by the safety application in runtime. 
Basically, this makes it possible to use one and the 
same safety connection for different communication 
users. This, in turn, is the prerequisite for challenging 
scenarios in the field of modular machines and  
AMRs, which call for dynamic connection setups of 
this type.



23

References 

[1] IEC 61508. (2010).
 Functional safety of electrical/electronic/programmable electronic safety-related systems.
 IEC: www.iec.ch 

[2] IEC 62280 (2014). Railway applications – Communication, signalling and processing systems – 
Safety-related communication in transmission systems.

 IEC: www.iec.ch 

[3] EC 61784-3. (2021). Industrial communication networks – Profiles – Part 3:
 Functional safety fieldbuses – General rules and profile definitions.
 IEC: www.iec.ch

[4] IEC 61784-3-3. (2021). Industrial communication networks – Profiles – Part 3:
 Functional safety fieldbuses – Additional specifications for CPF 3.
 IEC: www.iec.ch 

[5] IEC 62541. (2016). OPC 10000 Unified Architecture.
 IEC: www.iec.ch

[6] OPC 10000-15 OPC Unified Architecture (2021) –
 Part 15: Safety, www.opcfoundation.org 

[7] Castagnoli, G., Brauer, S., & Herrmann, M. (1993).
 Optimization of cyclic redundancy-check codes with 24 and 32 parity bits.
 IEEE Transactions on Communications, 41(6), 883-892. 

[8] Leach, P. (2005). A Universally Unique Identifier (UUID) URN Namespace,  
Request for Comments: 4122, The Internet Society, 2005.

[9] Walter M., Barthel H. (2020). Funktional sichere Kommunikation mit OPC UA Part 15:
 Safety: atp!info, Vulkan-Verlag GmbH, 2020. www.vulkan-shop.de



www.opcfoundation.org

OPC FOUNDATION HEADQUARTERS 
OPC Foundation
16101 N. 82nd Street, Suite 3B
Scottsdale, AZ 85260-1868 USA
Phone: 480 483-6644
office@opcfoundation.org

OPC FOUNDATION EUROPE
opceurope@opcfoundation.org

OPC FOUNDATION CHINA
opcchina@opcfoundation.org 

OPC FOUNDATION JAPAN
opcjapan@opcfoundation.org

OPC FOUNDATION KOREA
opckorea@opcfoundation.org

OPC FOUNDATION ASEAN
opcasean@opcfoundation.org

OPC FOUNDATION INDIA
opcindia@opcfoundation.org

V1


