
1

Version 1 // September 2022

OPC UA Safety:
Functional Safety Communication with OPC UA

Technical Paper

2

Functional Safety
Communication
with OPC UA

Controller DCS

ERP
MES
SCADA

Controller

Initiative for
Field Level Communications

OPC UA
SAFETY

OPC UA OPC UA

O
P

C
 U

A

O
P

C
 U

A

O
P

C
 U

A

OPC UA

O
P

C
 U

A

3

Functional Safety
Communication
with OPC UA

Contents

4 OPC UA Safety: Functional Safety
Communication with OPC UA

5 Milestones

6 Introduction

7 1. Overview
 1.1 Services
 1.2 Safety Measures
 1.3 Identifier
 1.4 Communication Patterns

10 2. Architecture
 2.1 Overview and Interfaces
 2.2 SafetyProvider
 2.3 SafetyConsumer
 2.4 OPC UA Safety for Field-Level Communications

20 3. Safety Argumentation
 3.1 Qualitative Reasoning
 3.2 Quantitative Evaluation

22 Summary

23 References

4

OPC UA Safety: Functional Safety
Communication with OPC UA

Safe Communication for Modular Machines
and Dynamic Systems
OPC UA Safety (OPC 10000-15 Unified Architecture
Part 15) specifies a functional safety layer for
communication between industrial controllers via a
standardized, vendor-independent interface. It
supports both unicast and multicast at the
application layer, as well as arbitrarily structured
safety data with a length of up to 1500 bytes.

The safety measures comply with all relevant
safety standards. OPC UA Safety makes it possible
to build modular machines in which the safety
functions adapt to the actual configuration of such
a machine. It is even possible to realize safety
functions requiring a change of communication
partners during runtime, for instance in the context
of autonomous mobile robots using OPC UA Safety.

5

➞ February 2018: Kick-Off Meeting of “PRO-
FIsafe over OPC UA”, a joint working group
between OPC Foundation and Profibus &
Profinet International

➞ April 2019: The FLC (Field-Level Communica-
tions) Initiative of the OPC Foundation
decides to make of it for the safe exchange
of data, and the working group is moved into
that initiative

➞ July 2019: The specification is renamed
“OPC UA Part 15: Safety” and becomes part
of the OPC core set of specifications

➞ October 2019: Publication of Release 1.04
(Evaluated against IEC 61784-3 by TÜV Süd)

➞ October 2019: FLC Initiative funds the devel-
opment of an OPC UA Safety test tool

➞ March 2020: FLC Initiative funds development
of a stack and invites other companies to
participate

➞ July 2020: Publication of Release 1.04

➞ November 2021: Publication of Release 1.05

Milestones

©
 d

en
is

is
m

ag
ilo

v
–

ad
ob

es
to

ck
.c

om

6

Introduction

The state of the art in functional safety commu-
nication is described in IEC 61508 [1], IEC 62280
[2] and IEC 61784-3 [3]. These standards describe
the transmission of safety-related messages via
a standard (non-safe) communication channel.
This can only be done if all transmission errors are
detected in the receiver in a safety-related manner
with a guaranteed probability of detection. Today,
almost all fieldbus protocols offer an associated
profile for safe communication. This allows safety-
related controllers to communicate via standard
communication channels with the sensors and
actuators belonging to the safety function. A sepa-
rate communication channel for functional safety-
related data exchange is no longer required. Yet,
communication between machines demands a safe-
ty protocol that supports communication from con-
troller to controller since each machine or even each
machine module is usually represented by a control-
ler. For this type of safety communication, however,
no manufacturer-independent, open standard exists
to date. This gap is now being closed by the OPC UA
Safety specification. Functional, safe communication
between machines (or between modules of machines)
is of relevance to a variety of different scenarios. Typi-
cal examples are transfer lines, electrified monorail
systems and machine tools with modular loading
and unloading systems. Others include autono-
mous mobile robots (AMR) that dock on to machines
and then perform a common safety function. A com-
mon safety function is given, say, where the machine
with resident AMR needs to be stopped in response
to pressing the emergency stop button on the
AMR itself.

OPC UA Safety addresses scenarios such as these.
In particular, it offers the following features and
properties:
➞ Unidirectional and bidirectional communication,

as well as multicast, at the application layer
➞ Any network topology: star, line, ring, grid, etc.
➞ Up to 1500 bytes of safety user data
➞ Dynamic connection setup at runtime.

From the aspect of functional safety, OPC UA Safety
is based on the widely used PROFIsafe protocol [4].
Because OPC UA Safety is built on OPC UA, it
inherits properties such as:
➞ Safety-related communication and standard

communication on a single transmission channel
➞ Arbitrary data rates
➞ No safety-related requirements whatsoever on

the non-safety-related nodes in the network
➞ No safety-related requirements on network

components (e.g., switches)
➞ No requirements on safe clock synchronization.

Some of the unique benefits of OPC UA Safety are:
➞ Support of interoperable multi-vendor Controller-

to-Controller (C2C), Controller-to-Device (C2D)
and Device-to-Device (D2D) communication

➞ Highly flexible – applicable in transportation,
process & factory automation, motion control

➞ Scalable - from SIL 1 to SIL 4
➞ Support of dynamic application scenarios –

dynamic reconfiguration of machinery and plants
➞ Large data payload size – scalable from simple

to complex, high capacity applications
➞ Ability to traverse routers – scalable from single

machines to plant-wide operation
➞ Simple deployment in resource-constrained end-

points (amplified by the availability of a
commercial stack)

This brochure first provides an overview (chapter 1)
and then describes the architecture of OPC UA Safe-
ty (chapter 2). The last part (chapter 3) summarizes
the basic reasoning for verifying protocol safety.

7

1.1 Services
The basic principle behind the safe exchange of data
with OPC UA Safety is a direct point-to-point con-
nection with the SafetyProvider (data source) and
SafetyConsumer (data sink) endpoints. As defined
by the part it plays, the SafetyProvider receives user
data from the local safety application and makes it
available via OPC UA services. The SafetyConsumer
uses OPC UA services to retrieve the user data and
makes them available to the local safety application.
As such, this is a request/response procedure, as
shown in Figure 1.

1. Overview

Figure 1: Sequence diagram of an OPC UA Safety connection to illustrate the request/response procedure.

SafetyProvider SafetyConsumer

Response

Response

Response

SafetyConsumerID, MNR0
, Flags

SafetyConsumerID, MNR1
, Flags

SafetyConsumerID, MNR2
, Flags

SafetyData 1 , Flags, SPDU_ID, SafetyConsumerID, MNR
0, CRC

SafetyData 2 , Flags, SPDU_ID, SafetyConsumerID, MNR
1, CRC

SafetyData 4 , Flags, SPDU_ID, SafetyConsumerID, MNR
2, CRC

S
af

et
yC

on
su

m
er

Ti
m

eo
ut

e.

g.
, 3

x
C

on
su

m
er

C
yc

le
Ti

m
e

C
on

su
m

er
C

yc
le

Ti
m

eSafetyData 1

SafetyData 3

SafetyData 2

SafetyData 4

Substitute
Values

SafetyData 2

SafetyData 1

SafetyData 4

8

1.2 Safety Measures
To detect transmission errors, relevant additional
information is added to the safety-related request
and response messages. Essentially, this involves
system-wide unique identifiers (IDs) for checking the
respective provider, a monitoring number (MNR)
for checking the correct sequence, and a CRC
signature for detecting data corruption. Sending a
timestamp is not necessary since punctuality of
the ResponseSPDU can be checked by the Safety-
Consumer using its local clock alone. This means
there is no need to synchronize the SafetyProvider
and SafetyConsumer clocks.

1.3 Unique Identifiers (IDs)
OPC UA Safety uses different IDs to detect address-
ing errors. Each SafetyProvider is assigned a unique
ProviderID, which is made known to the SafetyCon-
sumer to begin with. Together with other information
(e.g., signature showing the structure of the user
data sent), an SPDU_ID is calculated from the Pro-
viderID, which is included in each ResponseSPDU.
Based on the SPDU_ID, the SafetyConsumer can
check whether the SPDU received originates from
the expected SafetyProvider. In larger-type systems,
assigning unique IDs may come with a high level of
administrative input. This is particularly true if differ-
ent parts of a plant are built by different integrators.
Using several machines of the same type and the
associated cloning of automation projects initially
also lead to the co-existence of identical IDs, which

would then have to be changed manually to rule out
an ID occurring twice. To reduce the input required to
manage the IDs, each SafetyProvider additionally
contains a BaseID, which is also included in the
SPDU_ID and checked by the SafetyConsumer. Not
every SafetyProvider needs a unique BaseID;
instead, these are assigned jointly for entire plant
sections or machines. For example, if two
integrators are working on the construction of a
plant, each will use a different BaseID. It is
sufficient for the ProviderIDs assigned by each
integrator to be unique. When cloning projects
for volume-production machines, it is sufficient to
regenerate a separate BaseID for each machine.
Since the ProviderIDs are not changed, it is not
necessary to check for the uniqueness of all IDs after
cloning. The BaseID is a 128-bit value that can
be created using a random number generator. In
practice, for example, this is where a Universal
Unique Identifier (UUID, [8]) can be generated. It can
be proven with sufficient probability that no two
identical BaseIDs will occur. Therefore, it is not
necessary to make an explicit check as to whether
all plant parts have different BaseIDs. In some
applications, it may make sense to inform the
SafetyProvider of the Safety-Consumer it is currently
communicating with. For this purpose, the Safety-
Consumer also receives a relevant ConsumerID.
However, since it is sufficient to check only the
identity of the SafetyProvider to react in a safe
manner, the ConsumerID is not safety-relevant.

9

Figure 2: Communication relationships: Unidirectional and bidirectional unicast, as well as multicast.

Controller A

Controller A

Controller A

Unidirectional communication

Bidirectional communication

Multicast

Safety
Application

Safety
Application

Safety
Application

Safety
Application

Safety
Application

SafetyProvider SafetyConsumer

SafetyConsumer2 SafetyProvider2

SafetyProviderN

SafetyProvider1 SafetyConsumer1

SafetyConsumer2

SafetyConsumerN

Safety Appl.

Safety Appl.

Safety Appl.

SafetyProvider1 SafetyConsumer1

SafetyProvider2

… …

Controller B

Controller B

Controller B1

Controller B2

Controller BN

RequestSPDU

RequestSPDU

RequestSPDU

RequestSPDU

RequestSPDU

RequestSPDU

ResponseSPDU

ResponseSPDU

ResponseSPDU

ResponseSPDU

ResponseSPDU

ResponseSPDU

1.4 Communication Patterns
In practice, bidirectional and point-to-multipoint con-
nections (multicast) occur in safety applications in
addition to direct point-to-point connections. These
are achieved in OPC UA Safety by using multiple
SafetyProvider/SafetyConsumer pairs, as illustrated
in Figure 2. Given the SafetyProviders’ multiple in-
stantiation, multicast involves a certain overhead

over a solution that would use any existing multicast
mechanisms in the lower layers. OPC UA Safety,
however, comes with a specification that enables the
SafetyProvider to be implemented in a way that is
highly efficient both in terms of memory and comput-
ing capacity.

10

2. Architecture

2.1 Overview and Interfaces
OPC UA Safety follows the approach recommended
in IEC 61784-3 (Functional Safety for Fieldbus, [2]),
as illustrated in Figure 3. Accordingly, OPC UA
Safety is a layer that is inserted between the safety
application and the lower network layer that is
implemented as standard (non-safe) communication
channel. The OPC UA Safety stack layer has the
function of checking the integrity of all safety
messages communicated on the standard channel
and, on this basis, of detecting communication
errors and delivering only correct user data to the
safety application. This provides the capability of
remaining in control of all communication errors,
but not of errors in the end nodes themselves.
Consequently, OPC UA Safety (SafetyProvider and
SafetyConsumer) must be implemented in compli-
ance with IEC 61508 [1]. In particular, this involves
measures to overcome random hardware errors on
the one hand, and systematic hardware and soft-
ware errors on the other.
Making it easier to accommodate different underly-
ing communication services, connection to the OPC
UA stack takes place by what is referred to as an
OPC UA Mapper. Not being part of the safety-

relevant communication layer, this mapper can be
adapted without the need for any re-assessment of
implementing OPC UA Safety. The OPC UA Mapper
currently supports remote method calls (OPC UA
Client/Server) as well as OPC UA PubSub. The inter-
face to the safety application (Safety Application
Interface, SAPI) is in part application-specific be-
cause different applications also exchange different
data. As usual in OPC UA, however, this interface
can also be defined on a manufacturer-independent
basis – e.g., industry-specific – by means of
so-called companion specifications. In addition to
SAPI and connection to OPC UA via the OPC UA
Mapper, SafetyProvider and SafetyConsumer each
have a Safety Parameter Interface (SPI) and
a diagnostic interface. Exchanged between Safety-
Provider and SafetyConsumer, the safety protocol
data unit (SPDU), is defined by the structure of
the RequestSPDU and ResponseSPDU on the
one hand, and by the SafetyProvider and
SafetyConsumer state machines on the other.
The definitions of the SafetyProvider and
Safety-Consumer are described in more detail on
the following pages.

11

SafetyProvider SafetyConsumer

Companion
Specification:

Machine/Process-
specific interface

Companion
Specification:

Machine/Process-
specific interface

Figure 3: Overview of the OPC UA Safety Architecture

Protocol Data Unit

OPC UA — Mapper OPC UA — Mapper

OPC UA

PubSub
or

Client/Server

OPC UA

PubSub
or

Client/Server

e.g., OPC Call Service

RequestSPDU

ResponseSPDU

Safety Application

PDU

OPC UA
layer

Application
layer

To be certified
according to:
IEC 61784-3
IEC 61508
…

Modification
will not require
re-certification

OPC UA
Safety

Safety Application Safety Application

12

2.2 SafetyProvider
The SafetyProvider receives the safe user data
(SafetyData) from the safety application through its
Safety Application Programming Interface (SAPI).
Moreover, non-safety-related data (NonSafetyData)
can also be sent in consistent fashion (see Figure 4).
This means that both safe and non-safe data
sampled at the same time by the SafetyProvider are
also delivered together to the SafetyConsumer.
The SafetyProvider's behavior, and indirectly that
of the SafetyConsumer, can be influenced by the
safety application via control inputs. For example,
the ActivateFSV input can be used to make the
SafetyConsumer deliver safe substitute values
instead of the actual process values to its safety
application. The SafetyProvider is parameterized

via the Safety Parameter Interface (SPI) at commis-
sioning time. SafetyBaseID and SafetyProviderID
together define a globally (sufficiently) unique
ID for this instance of the SafetyProvider.
The SafetyStructureSignature is a checksum across
the structure and type identifier of the safe user
data sent. This is also checked by the
SafetyConsumer. If, for example, a programming
error makes the SafetyConsumer connect a
three-dimensional vector (identifier for the type
e.g., “vec3D”) with a SafetyProvider that provides
orientation in the form of three Euler angles (identifier
for the type e.g., “orientation”), the signatures
will not match up, and the Safety-Consumer will
not deliver this data to its safety application.

Figure 4: Interfaces of the SafetyProvider: SAPI, SPI and SPDUs.

SafetyProvider Instance

Safety Application Program Interface (SAPI)

Safety
Parameter
Interface (SPI)

ResponseSPDU

OPC UA — Mapper

SafetyData
(PV)

NonSafety-
Data

E
na

bl
eT

es
tM

od
e

O
pe

ra
to

rA
ck

P
ro

vi
de

r

O
pe

ra
to

rA
ck

R
eq

ue
st

ed

A
ct

iv
at

eF
S

V

M
on

ito
rin

gN
um

be
r

S
af

et
yC

on
su

m
er

ID

S
af

et
yP

ro
vi

de
rID

S
af

et
yB

as
eI

D

SafetyProviderIDConfigured

SafetyBaseIDConfigured

SafetyProviderLevel

SafetyStructureSignature

SafetyStructureSignatureVersion

SafetyStructureIdentifier

SafetyProviderDelay

SafetyServerImplemented

SafetyPubSubImplemented

RequestSPDU NonSafetyDataSafety Trailer
incl. CRCSafetyData

13

Figure 5: OPC UA information model, consisting of the node SafetyACSet (with fixed NodeID)

and one or more SafetyProviders.

The SafetyProvider's state machine is trivial and
comprises only two states (see Figure 6). In the
“WaitForRequest” state, the provider waits for a
RequestSPDU. In the “PrepareSPDU” state, a
ResponseSPDU is generated with the help of the
RequestSPDU, and the data currently present at the
SAPI, and is transferred to the OPC UA Mapper.
This means implementation of the SafetyProvider is
practically without any state. It is not necessary to
establish any connection at safety level, and identity
of the SafetyConsumer does not have to be made
known to the SafetyProvider.
A SafetyProvider can serve several SafetyConsum-
ers one after another. To avoid availability problems,
the SafetyConsumers must in this case implement a
procedure that prevents simultaneous access to one
and the same SafetyProvider. However, this can be
done in a non-safe manner since any data corruption
caused by concurrent access would be safely
detected.
Each instance of the SafetyProvider is represented in
the OPC UA information model by an object of type
SafetyProviderType (see Figure 5). Additionally, each
OPC UA Server implementing OPC UA Safety gets
the SafetyACSet node with a fixed, known NodeID,
which organizes all SafetyProvider objects. This
makes it easy to reach all SafetyProviders while
commissioning and during runtime.

OPC UA

OPC UA Safety

Vendor

ReadSafetyDiagnostics

ReadSafetyData

Folder Type
Objects

Folder Type
SafetyACSet

AnyObjectType
AnyObject

SafetyProviderType
MySafetyProvider

SafetyProviderParametersType
Parameters

SafetyPDUsType
SafetyPDUs

Organizes

Organizes

Organizes

Organizes

Other Providers

Other Consumers

Organizes Singleton with
fixed Nodeld

SafetyConsumerType
MySafetyConsumer

SafetyPDUsType
SafetyPDUs

SafetyConsumerParametersType
Parameters

Organizes

14

Figure 6: State diagram of the SafetyProvider.

2.3 SafetyConsumer
In the SafetyConsumer, the safe user data is taken
from the ResponseSPDU, checked for validity and
delivered to the safety application together with the
non-safe user data via the SAPI (see Figure 7). In ad-
dition, the safety application receives information
about the validity of this data via this interface (output
FSV_Activated). The SafetyConsumer is parameter-
ized via the SPI. In particular, the anticipated Safety-
BaseID and SafetyProviderID are now set and, in the
same way as the SafetyProvider, a signature saved
that reveals the safe user data structure and
identifier(s). In the event if an error, for example, an
operator acknowledgement (OperatorAckNeces-
sary) is defined which also determines the length of
time the SafetyConsumer is required to wait before
the SafetyProvider’s responds and triggers a timeout
(SafetyConsumerTimeout).
The SafetyConsumer’s state machine is shown in
Figure 8. Operating in a fault-free state, the Safety-
Consumer cycles through states S13, S14, S15,
S16 and S18. In state S13 the RequestSPDU is sent
and in state S14 the ResponseSPDU is being
awaited. In state S15 the CRC signature of the
ResponseSPDU is checked and in state S16 the

origin and timeliness are checked. Failure of any of
these checks or the occurrence of any timeout in
state S14 induces state S17, whereupon an error
message is generated for diagnostic purposes.
A safety-related response may be required when
OPC UA Safety detects an error in the non-safety-
related communication layers. Depending on
circumstances, however, OPC UA Safety is capable
of tolerating such an error. One of these being that
the error occurs sporadically, i.e., the subsequent
RequestSPDU is re-rendered error-free. On top of
this, the last error to occur must not have occurred
before a SafetyErrorIntervalLimit. This Safety-
Consumer parameter determines the minimum inter-
val tolerable between sporadic errors, and is set
according to the desired Safety Integrity Level. For
SIL2, a value of six minutes or greater must be set.
And for SIL3, a value of sixty minutes or greater must
be set. In this case, sporadic errors occurring less
frequently than every six minutes (for SIL2) do not
necessarily lead to any transition to a safe state.
Nonetheless, the next, correct RequestSPDU must
come in before the SafetyConsumerTimeout expires.
A tolerated error makes the request-response cycle

S 1_WaitForRequest

S 2_PrepareSPDU

[new RequestSPDU received]/
T2

/T1

/T3

Initialization

15

Figure 7: Interfaces of the SafetyConsumer: SAPI, SPI and SPDUs.

SafetyConsumer Instance

Safety Application Program Interface (SAPI)

Safety
Parameter
Interface (SPI)

ResponseSPDU

OPC UA — Mapper

SafetyData
(PV or FSV)

NonSafety-
Data

E
na

bl
e

FS
V

_A
ct

iv
at

ed

O
pe

ra
to

rA
ck

C
on

su
m

er

O
pe

ra
to

rA
ck

R
eq

ue
st

ed

O
pe

ra
to

rA
ck

P
ro

vi
de

r

Te
st

M
od

eA
ct

iv
at

ed

S
af

et
yP

ro
vi

de
rID

S
af

et
yB

as
eI

D

S
af

et
yC

on
su

m
er

ID

SafetyProviderIDConfigured

SafetyBaseIDConfigured

SafetyConsumerIDConfigured

SafetyProviderLevel

SafetyStructureSignature

SafetyStructureSignatureVersion

SafetyStructureIdentifier

SafetyConsumerTimeOut

SafetyOperatorAckNecessary

SafetyErrorIntervallLimit

SafetyClientImplemented

SafetyPubSubImplemented

RequestSPDU NonSafetyDataSafety Trailer
incl. CRCSafetyData

16

Figure 8: State diagram of the SafetyConsumer.

S 11_WaitForReStart

S 13_PrepareRequest

S 17_Error

S 18_ProvideSafetyData

S 14_WaitForChangedSPDU

S 12_Initialize_MNR

[SAPI.Enable==1 && <ParametersOK?>]/
T13

[SAPI.Enable==0]/
T15

[SAPI.Enable==1]/
T26

/T16

WDTimeout/
T18

/T25

[New
ResponseSPDU
received]/
T17

[CRC err and
SafetyErrorInterval
Timer expired]/
T19[

[CRC err and
SafetyErrorIntervalTimer
not expired]/
T20

[SPDU NOK and
SafetyErrorInterval
Timer not expired]/
T24

[CRCCheckOK]/
T21

[SPDU NOK and
SafetyErrorInterval
Timer expired]/
T23

[SPDU OK]/
T22

/T14

/T12

[SAPI.Enable==1 && not
<ParametersOK?>]/
T27/

Initialization

S 15_CRCCheckSPDU

S 16_CheckResponseSPDU

Request / Response part

17

Figure 9: Bidirectional communication where operator acknowledgment is possible on both sides.

Controller A

Safety App Safety AppSafety
Provider1

Safety
Consumer2

Safety
Provider2

Safety
Consumer1

OperatorAckProvider

OperatorAckConsumer
OA

OperatorAckRequested

OperatorAckRequested

OperatorAckProvider

Controller B

RequestSPDU

RequestSPDU

ResponseSPDU

ResponseSPDU

OAOperatorAckConsumer

OperatorAckRequested

OperatorAckProvider

OperatorAckProvider

OperatorAckRequested

>=1

>=1

to run through a second time. It must be noted that
new user data cannot be made available to the safe-
ty application while this is taking place. A safe re-
sponse must be given if an error cannot be tolerated
(because it is a permanent error, or transient errors
occur too frequently). In such cases, the SafetyCon-
sumer uses the FSV_Activated variable to tell the
safety application that no valid process values exist.
In this case, the user data is set to zero bit by bit.
Depending on the type of error that has occurred,
operator acknowledgement may be required to
return to operation with real process values. Some
applications always demand operator acknowledge-
ment, this can be given via the OperatorAckNeces-
sary parameter (see Figure 9).
Any operator acknowledgement required is indicated
via the OperatorAckRequested output as soon as
any error has been eliminated. A rising edge at the
OperatorAckConsumer input subsequently resumes

regular operation, i.e., the output of process values
rather than safe substitute values. In the simplest
case, the OperatorAckConsumer input is connected
in the safety application of the SafetyConsumer,
e.g., to a push button or an element in a human-
machine interface. Nonetheless, this does not rule
out acknowledgement scenarios of a more complex
nature. Figure 9, for instance, shows a bidirectional
OPC UA Safety connection with one SafetyProvider
and SafetyConsumer in either direction. In this
example, operator acknowledgement (OA) can take
place on both sides. For this purpose, the signal is
connected to the OperatorAckConsumer input of the
respective SafetyConsumer on the one hand, and to
the OperatorAckProvider input of the SafetyProvider
on the other. The latter’s result sets the relevant
SafetyConsumer’s Operator-AckProvider output.
Connecting this output to the OperatorAckConsumer
input acknowledges the SafetyConsumer at the
connection’s other end.

18

2.4 OPC UA Safety for Field-Level
Communications
The OPC Foundation is developing the Field eXchange
(OPC UA FX or simply UAFX) specifications to extend
and enhance the OPC UA capabilities to cover
requirements of field-level applications. These are now
available for Controller-Controller applications and will
soon be available for Controller-Device applications.
The OPC UA Safety protocol is transported within
standard UAFX connections using the inter-channel
principles described in IEC 61784-3 to transmit safety
data payload between automation components in

addition to the standard data payload exchange.
This principle cuts assessment input to the safe
transmission functions, i.e., to a level that means the
underlying UAFX connections need no additional
functional safety assessment. Safety Functional
Entities may include non-safe and safe input and
output variables. Safety application inside the FE
must also be developed in a safe workflow. The
safety application is connected directly with
SafetyProvider / SafetyConsumer, which exchange

Figure 10: Safety connections between Automation Components

UAFX Connection 1

UAFX Connection 2

Automation Component A Automation Component B

Automation Component C

OPC UA
Mapper

OPC UA
Mapper

OPC UA
Mapper

OPC UA
Mapper

Safety
Consumer

Safety
Provider

Safety
Functional
Entity

Safety
Consumer

Safety
Provider

Safety
Functional
Entity

Safety
Functional
Entity

RequestSPDU

ResponseSPDU

RequestSPDU

ResponseSPDU

19

data via the safety protocol (see Figure 10). The
OPC UA Mapper is used to interface both
the safety layer and underlying communication. and
supports the channel between SafetyProvider and
SafetyConsumer. The most basic type of safety
communication is bidirectional communication,
where a safety application on one AC A sends data
to a safety application on another AC B. The Safety-
Consumer initiates communication with the Request
SPDU. The SafetyProvider mirrors the received ID
and counters, adds the requested safety data and
secures all data via a checksum before responding
with the ResponseSPDU (see Figure 11).
One AC can be SafetyConsumer and SafetyProvider
at one and the same time. Connection between
SafetyProvider and SafetyConsumer can be estab-
lished and terminated during runtime, allowing differ-
ent consumers to connect to the same SafetyPro-
vider at different times.

Automation Component (AC) A Automation Component (AC) B

Safety
Provider

Safety Data

Safety
Consumer

OPC UA
Mapper

OPC UA
Mapper

UAFX
Connection

Safety
Application

Safety
Application

RequestSPDU

ResponseSPDU

Wait for
Request

Proceed
Request

Wait for
Request

Initialize

Check

Prepare
SPDU

Wait for
SPDU

Error

Time-
out1

Figure 11: SafetyProvider and Consumer State Machines

1 To avoid running into safety

timeout, SPDUs may also

be protected by end-to-end

latency guarantee.

Provide
S-Data

SafetyProvider State Diagram
The SafetyProvider has a very simple state machine
to implement. It simply waits for a request and, if the
request is received, the safety message is sent out.
All safety checks take place on the SafetyConsumer
side.

SafetyConsumer State Diagram
SafetyConsumer initiates the safe exchange of data,
waits for the response, and checks for potential
communication errors (integrity, promptness, au-
thenticity, in line with IEC61784-3). Once done,
SafeData is provided to the safety application inside
the AC. If a communication error occurs, failsafe
substitute values are instead passed to the safety
application, resulting in error indication.

Safety Data

20

3. Safety Argumentation

3.1 Qualitative Reasoning
Following international standard IEC 61784-3 [2],
OPC UA Safety must be able to handle all commu-
nication errors that can occur in the lower network
layers. These are depicted in Table 1, the mecha-
nisms specified in OPC UA Safety being shown
in each case. The mechanisms cover errors in the
(RequestSPDU) request and in the (ResponseSPDU)

response, despite only the response being checked
for errors by the SafetyConsumer. This works
because the SafetyProvider copies all data con-
tained in the RequestSPDU to the ResponseSPDU,
making it possible to detect an error later in the
SafetyConsumer.

Table 1: Communication errors protection measures taken according to IEC 61784-3.

Communication Error
Safety Measures

MonitoringNumber Timeout with receipt Set of IDs for SafetyProvider Data integrity check

Corruption – – – x

Unintended repetition x x – –

Incorrect sequence x – – –

Loss x x – –

Unacceptable delay – x – –

Insertion x – – –

Masquerade x – x x

Addressing – – x –

21

3.2 Quantitative Evaluation
The 32-bit CRC method used in OPC UA has a
conditional residual error probability of 4.0 x 10-10
or better. This means that out of 2.5 x 109 faulty
RequestSPDUs, on average less than one is not
detected as faulty. Figure 12 shows the residual
error probability for all SPDU lengths from 1 to
1,521 bytes and all relevant bit error probabilities.
Each of the values were calculated using the dual
code (e.g., Castagnoli method [6]). The need to
iterate over all possible user data lengths is shown

in Figure 13, this showing the computed conditional
residual error probability for selected user data span-
ning a more prolonged period. In these cases, the
residual error probability exceeds the desired value of
(4 x 10-10) by several orders of magnitude. The figure
also shows that the residual error probability must
be calculated for all bit error probabilities. Calculation
of the "worst case" for bit error probability (p = 0.5)
does not necessarily lead to the highest conditional
residual error probability.

Figure 13: Counter-example: selected message lengths where the conditional residual error probability is much larger than 2-32.

length of data (in bytes, excluding FCS)1x10-6

1x10-7

1x10-8

1x10-9

1x10-10

1x10-11

2-32

P
re

,c
on

d:

co
nd

iti
on

al
 re

si
du

al
 e

rr
or

 p
ro

ba
bl

ili
ty

p: bit error probability

0.0001 0.001 0.01 0.1 0.5

8996 bytes
8496 bytes
7996 bytes

Figure 12: Conditional residual error probability of the CRC procedure used in OPC UA for message lengths of 1-1,521 bytes

and all relevant bit error probabilities p.

length of data (in bytes, excluding FCS)

3.5x10-10

3x10-10

2.5x10-10

2x10-10

1.5x10-10

1x10-10

5x10-11

0

2-32

P
re

,c
on

d:

co
nd

iti
on

al
 re

si
du

al
 e

rr
or

 p
ro

ba
bl

ili
ty

p: bit error probability

0.0001 0.001 0.01

1 – 31
32 – 63
64 – 127
28 – 255
256 – 511
512 – 1023
1024 – 1500
1501 – 1521

22

Summary

For the first time, OPC UA Safety specifies a stan-
dardized exchange of functional safety-related data
between industrial controllers and devices from
different manufacturers. Proceeding from OPC UA
Client/Server and OPC UA PubSub, which are part
of the non-safety related communication layers, it is
possible to define a safe communication protocol
that meets all IEC 61508 [1] requirements. Unlike
safe fieldbus protocols, there is no distinction
between "controllers" and "devices". All communica-
tion users have equal rights and can implement any
number of data sources (SafetyProvider) and data
sinks (SafetyConsumer). This permits the creation of
complex communication relationships and network
topologies.

OPC UA Safety provides the capability of structur-
ing user data to suit any application. Capability of
providing user data lengths of between one and
1,500 bytes. IEC 61784-3, OPC UA Safety uses a
set of IDs to check at runtime level whether the data
originates from the expected source or whether data
was supplied from an incorrect source, e.g., in
response to an addressing error. Unlike the known
safe communication protocols, OPC UA Safety can
select these IDs by the safety application in runtime.
Basically, this makes it possible to use one and the
same safety connection for different communication
users. This, in turn, is the prerequisite for challenging
scenarios in the field of modular machines and
AMRs, which call for dynamic connection setups of
this type.

23

References

[1] IEC 61508. (2010).
 Functional safety of electrical/electronic/programmable electronic safety-related systems.
 IEC: www.iec.ch

[2] IEC 62280 (2014). Railway applications – Communication, signalling and processing systems –
Safety-related communication in transmission systems.

 IEC: www.iec.ch

[3] EC 61784-3. (2021). Industrial communication networks – Profiles – Part 3:
 Functional safety fieldbuses – General rules and profile definitions.
 IEC: www.iec.ch

[4] IEC 61784-3-3. (2021). Industrial communication networks – Profiles – Part 3:
 Functional safety fieldbuses – Additional specifications for CPF 3.
 IEC: www.iec.ch

[5] IEC 62541. (2016). OPC 10000 Unified Architecture.
 IEC: www.iec.ch

[6] OPC 10000-15 OPC Unified Architecture (2021) –
 Part 15: Safety, www.opcfoundation.org

[7] Castagnoli, G., Brauer, S., & Herrmann, M. (1993).
 Optimization of cyclic redundancy-check codes with 24 and 32 parity bits.
 IEEE Transactions on Communications, 41(6), 883-892.

[8] Leach, P. (2005). A Universally Unique Identifier (UUID) URN Namespace,
Request for Comments: 4122, The Internet Society, 2005.

[9] Walter M., Barthel H. (2020). Funktional sichere Kommunikation mit OPC UA Part 15:
 Safety: atp!info, Vulkan-Verlag GmbH, 2020. www.vulkan-shop.de

www.opcfoundation.org

OPC FOUNDATION HEADQUARTERS
OPC Foundation
16101 N. 82nd Street, Suite 3B
Scottsdale, AZ 85260-1868 USA
Phone: 480 483-6644
office@opcfoundation.org

OPC FOUNDATION EUROPE
opceurope@opcfoundation.org

OPC FOUNDATION CHINA
opcchina@opcfoundation.org

OPC FOUNDATION JAPAN
opcjapan@opcfoundation.org

OPC FOUNDATION KOREA
opckorea@opcfoundation.org

OPC FOUNDATION ASEAN
opcasean@opcfoundation.org

OPC FOUNDATION INDIA
opcindia@opcfoundation.org

V1

